

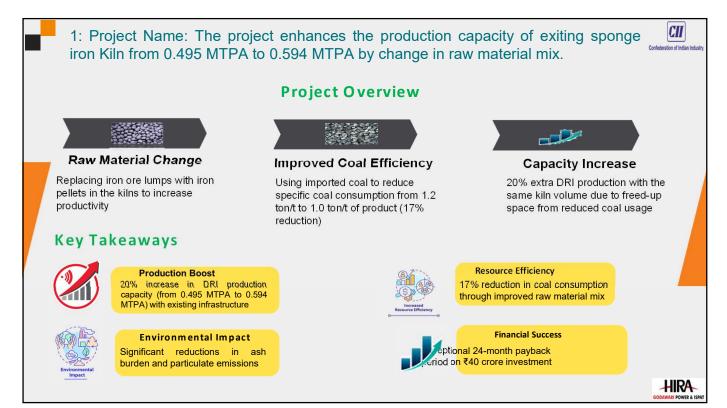
CII

Project-1: Enhancement the production capacity of exiting sponge iron Kiln from 0.495 MTPA to 0.594 MTPA by change in raw material mix.

BACKDROP..

Started Date :16.07.2021 - End Date :19.01.2024

Our integrated plant includes a sponge iron unit that being operated using the Direct Reduced Iron (DRI) process, relying on normal-grade iron ore, pellets, and coal. The presence of gangue in the iron ore and high ash content in the coal occupied significant equipment volume, limiting our production capacity to 0.495 million tons per year.



To increase production without adding new equipment in DRI, we focused on improving the quality of our raw materials. By leveraging our own pellet plants, we established an iron ore beneficiation plant to upgrade the iron content from 62% to 65% Fe. We also started using imported coal with a higher fixed carbon (FC)

3

Advantages with utilization of Pellet Ore & Low Ash Coal:

FEED ORE ANALYSIS				
	IRON ORE (Before)	PELLET (After)		
FE (T) %	60-62	<mark>63-64</mark>		
T.I.%	80	94		
A.I %	14	4.5		
Size	05-18	05-18		
LOI%	2-4%	0.0-0.1%		

IRON ORE + MIXED COAL (D+I)					
Before					
Production Capacity of SID	Ton	495000			
iron Ore @ 1.6 T/T	Ton	792000			
Coal @ 1.2 T/T (Mixed Coal)	Ton	<mark>594000</mark>			
Average Ash	%	0.30			
Ash	%	178200			

COAL ANALYSIS					
	DOMESTIC (Before)	IMPORTED (After)			
MOISTURE %	12	10			
V.M %	30	26			
ASH %	30	<mark>16</mark>			
F.C %	40	58			

PELLET ORE + IMPORTED COAL After				
Proposed Production Capacity of SID	Ton	594000		
Pellet @ 1.45 T/T	Ton	861300		
Coal @ 1 T/T (Imported Coal)	Ton	<mark>594000</mark>		
Average Ash	%	0.16		
Ash	%	<mark>95040</mark>		

HRA GODAWARI POWER & IS

5

Project 1- Implementation Challenges & Solutions

DRI Plant Process Optimization

Challenges Encountered

- •Initial quality issues surfaced during the planned production increase from 0.495 to 0.594 units.
- •The primary challenge was to achieve sponge iron grade improvement while scaling up production simultaneously.

Training & Solutions

- •Through a focused effort on optimizing process parameters(ie. Tempracher, Kiln Rotations), we successfully stabilized production and met both quality and quantity targets.
- •We conducted internal meetings to provide targeted training for employees.
- •The training focused on refining operational procedures and implementing new processes for intervalbased quality and process checks.

Increase In Revenue To Government:

The significant rise in DRI production efficiency, with the GPI increasing from 0.495 to 0.594, leads to higher output volumes. This expanded production base subsequently boosts government revenue through increased corporate, excise, and mineral development taxes.

Uniqueness of the Project

Zero Additional Resources

No extra water or coal consumption required

No Increased Waste

No additional waste burden on the environment

20% Production Increase

Same kiln producing significantly more DRI and WHRBpower with existing infrastructure

CII

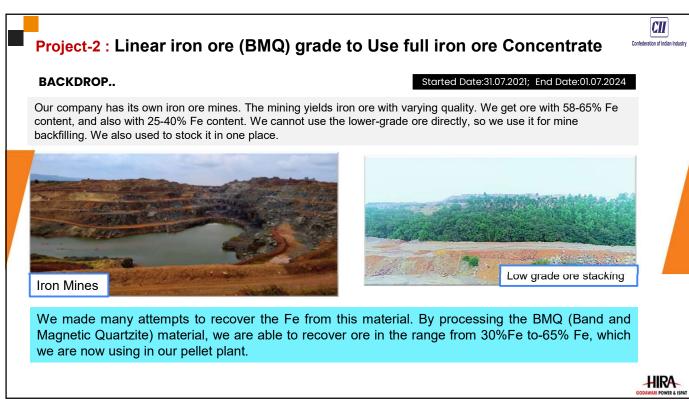
7

Intangible Benefits:

Reduced Shutdown Days

More efficient operations lead to shorter production Campaigns days from 100 to 300+ days campaigns **Resource Optimization**

Decreased fresh raw material and energy consumption per ton of product.


Equipment Longevity

Reduced wear and tear on equipment due to optimized operations.

Conclusion:-

In Our case there is neither any new set up nor physical expansion of capacity in the existing Sponge Iron plant comprising of kilns. The expansion in production capacity will be mainly due to change in coal from domestic to imported resulting in reduction of specific coal consumption from 1.2 to 1.0 As such there will not be any increase in coal.

BMQ Beneficiation Plant at Aridongri-Mines

Grinding area Ball mills

Beneficiation area LIMS

Thickener

Pressure Filters

BMQ Beneficiation

This project's uniqueness lies in its innovative beneficiation process, which upgrades ore to a superior grade of 62-65% FeT. The method significantly enhances ore recovery from existing resources while simultaneously reducing overburden waste, minimizing the environmental footprint

11

Project 2- Implementation Challenges & Solutions

BMQ Beneficiation Process Optimization

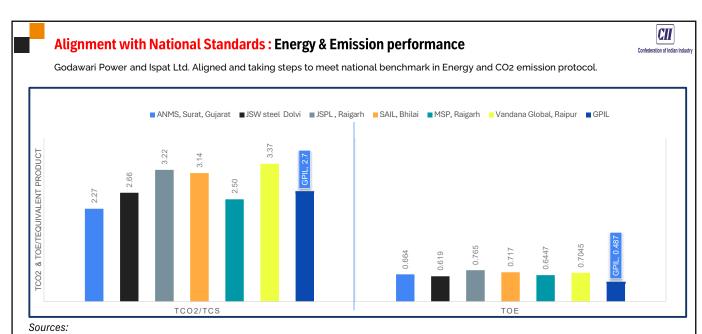
Challenges Encountered

Production issues arose in the beneficiation process due to varying feed quality (Fe content) from different equipment sections.

This led to discrepancies in product recovery and tailing loss.

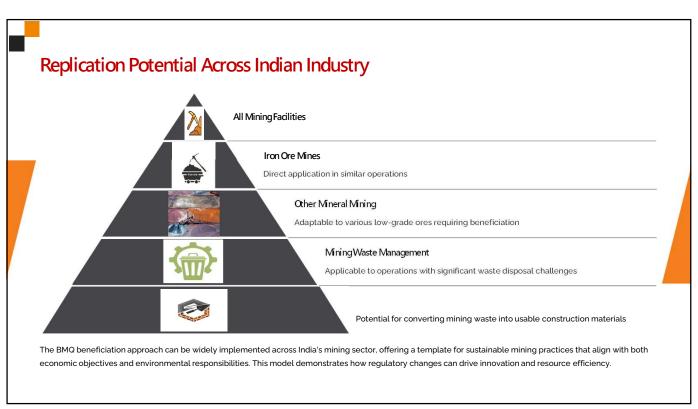
To solve this problem, additional test works had to be conducted with the help of external agencies. There were also issues with the power supply required for the project.

Training & Solutions


We solved the power supply issue by coordinating with the electricity board and installing a new power line.

We provided regular training to employees for plant operations.

We maintained quality by conducting regular quality checks.


Since our company has its own solar plant, we are contributing to environmental protection by supplying green power from the solar plant to our BMQ Plant.

- Ministry of Power, S.O.4491(E), 26th October, 2021 (https://beeindia.gov.in/sites/default/files/PAT%20CYCLE%207%20505%20DCs.pdf)
- MINISTRY OF ENVIRONMENT FOREST AND CLIMATE CHANGE, G.S.R. 405(E); 23rd June, 2025 (https://moef.gov.in/storage/tender/1750856052.pdf)

